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Abstract While artificial intelligence (AI) has become widespread, many
commercial AI systems are not yet accessible to individual researchers nor the
general public due to the deep knowledge of the systems required to use them. We
believe that AI has matured to the point where it should be an accessible technology
for everyone. We present an ongoing project whose ultimate goal is to deliver
an open source, user-friendly AI system that is specialized for machine learning
analysis of complex data in the biomedical and health care domains. We discuss
how genetic programming can aid in this endeavor, and highlight specific examples
where genetic programming has automated machine learning analyses in previous
projects.
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8.1 Introduction

A central goal of artificial intelligence (AI) is to use computational hardware
and software to solve complex problems in a human-competitive manner [9].
The practicality of this goal is that AI can be tasked with solving problems or
performing functions that humans cannot perform or simply do not have time
for. Most AI methodologies can be grouped into top-down approaches, wherein
cognition is viewed as a high-level phenomenon that is independent of the low-level
details, or bottom-up approaches, which define basic computational building blocks
such as artificial neurons that collectively give rise to “emergent” [29] intelligent
behavior. The top-down approach has been difficult to realize given the inherent
complexity of human cognition. However, the bottom-up has had some success
owing to the availability of sophisticated algorithms such as genetic programming
(GP) [10] and deep neural networks [6]. This is particularly true today with abundant
and inexpensive high-performance computing, leading to many human-competitive
success stories [9].

Medical applications of AI have had a long history with both successes and
failures. One of the early successes was the Mycin system, which was designed
to predict the antibiotic that a patient with an infection should receive in the
intensive care unit [2]. Mycin combined a knowledge base along with a set of
rules implemented as part of an expert system. The system was demonstrated to
be human-competitive, but was never put into clinical practice because of legal
concerns and the time it took clinicians to enter the patient data required for Mycin
to make the predictions. The field of AI has matured since Mycin was developed
and, importantly, computing power has grown tremendously in parallel. Examples
of modern AI successes include IBM’s Watson, which beat the world champion of
the game show Jeopardy [5]. The Watson AI system that won Jeopardy combined
knowledge representation, information retrieval, natural language processing, and
machine learning along with high-performance computing to access and exploit a
knowledge base that included the Wikipedia text corpus. This was a milestone in
AI because it showed that a computational system could compete with humans on
difficult language processing tasks. Watson is now being marketed in the health care
domain although the jury is still out on its effectiveness.

Commercial AI systems such as Watson show potential but are not yet accessible
to individual researchers nor the general public due the cost and the complexity of
working with a team from IBM. It is our working hypothesis that,

AI has matured to the point where it should be an accessible technology for everyone.

Democratization of AI will be important if we seek to integrate this exciting new
technology into multiple different domains, as demonstrated by recent efforts such
as Orange [4]. We describe here the early development stages of an open source
and user-friendly AI system—PennAI (http://pennai.org)—for machine learning
analysis of complex data in the biomedical and health care domains. We focus
our initial efforts on the classification of biomedical endpoints such as disease
susceptibility. We describe in turn below each of the components of our AI system
and then end with an example and a discussion of how we envision this system

http://pennai.org
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Fig. 8.1 The components of PennAI, a user-friendly AI system developed at the University of
Pennsylvania

being used to solve complex biomedical problems. Further, we discuss how GP can
aid in enhancing PennAI, and highlight specific examples where GP has automated
machine learning analyses in previous work.

The components of PennAI include a human engine (i.e., the user); a user-
friendly interface for interacting with the AI; a machine learning engine for data
mining; a controller engine for launching jobs and keeping track of analytical
results; a graph database for storing data and results (i.e., the memory); an AI
engine for monitoring results and automatically launching or recommending new
analyses; and a visualization engine for displaying results and analytical knowledge
(Fig. 8.1). This AI system provides a comprehensive set of integrated components
for automated machine learning (AutoML), thus providing a data science assistant
for generating useful results from large and complex data problems. PennAI is
housed in the “Idea Factory,” a facility designed to facilitate collaboration and
promote new methods of communicating and presenting scientific innovation.
The Idea Factory makes sophisticated data visualization and artificial intelligence
analytics easy for users across the entire Penn community (Fig. 8.2).

8.2 The Human Engine

The most important component of the proposed AI system is the user. Contrary to
some claims that AI will replace human users, we see the human as an integral
part of the discovery process and a partner with the AI. One way to view this
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Fig. 8.2 The “Idea Factory,” home of PennAI

partnership is with the human as the driver of the discovery process and the AI
as the data science assistant. Thus, the AI provides an additional set of hands in a
modern data science discovery environment that might include human teammates
with expertise in computer science, statistics, and applied mathematics. We have
previously suggested this idea of human-computer interaction that places the human
user at the epicenter [22]. This idea has also previously been explored from the point
of view of the user or domain expert [16].

Langley [16] provides five important tips that are relevant to thinking about the
relationship humans have with AI for data mining using machine learning. First,
traditional machine learning notations are not easily communicated to scientists.
This consideration is important because a machine learning model may not be
interpretable by a user. Second, scientists often have initial models that should
influence the discovery process. Domain-specific knowledge can be critical to the
discovery process. Third, scientific datasets are often rare and difficult to obtain.
It often takes years to collect and process the data before it can be analyzed. As
such, it is important that the analysis is carefully planned and executed, and that any
general feedback about the performance of the learning process is not lost between
studies. Fourth, scientists want models that move beyond description and provide
explanations of the data. Explanation and interpretation are paramount to the user.
Finally, scientists want computational assistance rather than a complete replacement
of themselves. Langley [16] further suggests that users want interactive discovery
environments that help them understand their data while at the same time giving
them control over the modeling process. Collectively, these five lessons suggest that
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synergy between the user and the AI is critical. With this in mind, our proposed AI
system includes a graphical user interface (GUI) that allows the user to easily launch
analyses, view the results, and give the AI feedback about what results are useful or
interesting.

8.3 The Human-Computer Interaction Engine

As described above, a key component of PennAI is human-computer interaction.
The first important feature is to make it easy for the user to directly launch machine
learning analyses by choosing a method and its parameter settings from an intuitive
push-button menu implemented through the web using JavaScript. The user can
launch single analyses or, in an advanced mode, launch a grid search across multiple
methods and parameter settings. The methods and the controller that keep track
of these analyses is described below. Figures 8.3 and 8.4 show prototypes of
our GUI for uploading and viewing datasets for analysis and launching machine
learning analyses on those datasets, respectively. Our JavaScript implementation is
compatible with mobile devices, which allows the user to interact with the AI system
from any Internet-connected device.

The second key feature of PennAI is the ability to toggle the AI on and off for
automated analysis, shown in Fig. 8.3. An AI toggle allows the user to turn the AI
on and set parameters controlling the maximum number of runs the AI can launch,
as well as the frequency of updates the user would like to receive by email or text
message. The GUI also provides a simple thumbs up/down selection for each result
received by PennAI, which provides feedback to PennAI that is incorporated into
its expert knowledge system.

8.4 The Machine Learning Engine

Our first application of PennAI is for data mining using machine learning in the
biomedical domain. Here, we make use of an extensive open source machine learn-
ing library in Python called scikit-learn [28]. Scikit-learn provides peer-reviewed
implementations of several common supervised and unsupervised machine learning
algorithms, data preprocessing methods, feature engineering and selection methods,
hyperparameter optimization procedures, and more. To most users, scikit-learn is
considered to be the standard machine learning library in Python.

Of course, there are dozens of machine learning algorithms, preprocessors, etc.
to choose from in scikit-learn, which can be overwhelming to a novice user. To
simplify the algorithm selection process for PennAI users, we currently limit Pen-
nAI to six machine learning algorithms that we believe will handle most supervised
classification use cases, shown in Table 8.1. We also limit the parameter choices
for each algorithm to a handful of the most important parameters and parameter
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Fig. 8.3 Prototype of the graphical user interface for managing and viewing datasets

Table 8.1 Machine learning
algorithms available in
PennAI

Classification Regression

Logistic regression ElasticNet

Decision tree Decision tree

k-Nearest neighbors k-Nearest neighbors

Support vector machine Support vector machine

Random forest Random forest

Gradient boosting Gradient boosting

options, which makes it easier for users to choose a parameter configuration at
the expense of algorithm customizability. An example of the interface to the
Machine Learning Engine can be found in Fig. 8.4, where only a handful of the
most important parameters and parameter options are available for the k-Nearest
Neighbors classification algorithm.
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Fig. 8.4 Prototype of the Machine Learning Engine graphical user interface

In an upcoming PennAI implementation, we will provide simplified descriptions
of the machine learning algorithms and parameters so users can make use of the
algorithms without fully understanding their implementation. For example, when
using a random forest it is not necessary for the user to understand what tuning the
n_estimators parameter does to the model. Instead, it is more important for
the user to understand that adding more decision trees to the random forest (i.e.,
increasing n_estimators) improves model performance but increases training
time, whereas removing decision trees from the random forest decreases model
performance but decreases training time [7].

Once the Machine Learning Engine finishes training and evaluating a machine
learning model, it stores the machine learning model, the model predictions, and
an analysis of the model in the Graph Database Engine, which are used in the
Visualization Engine (both described below).
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8.5 The Controller Engine

The Controller Engine acts as the interface between the high-performance comput-
ing system and the user or AI. This component is hidden from the user but facilitates
the automatic launching of jobs on a multi-CPU machine, computing cluster, or
cloud computing system. The controller must not only coordinate the launching of
jobs but also keep track of when they finish and deposit the results in the Graph
Database Engine (described below) that serves as the memory of the system.

For the Controller Engine, we selected an open source package called the Future
Gadget Lab (FGLab), which is available on GitHub.1 FGLab functions as a server
with individual runs launched as clients, called FGMachines. FGLab uses node.js to
coordinate distributed jobs and uses MongoDB [3] as the backend database in the
Graph Database Engine.

8.6 The Graph Database Engine

Another key component of PennAI is a memory system that keeps track of every
analysis that is run on each data set. We keep track of the details of the machine
learning method, the parameter settings, the data set analyzed, and results such as
the model, model error, and area under the receiver operating characteristic curve
(AUC). These are all stored in a JSON file that is deposited in a MongoDB NoSQL
database. The advantage of using a NoSQL database is that new data elements
can be added without creating tables and without strict format specifications. This
flexibility is important for the rapidly changing landscape of machine learning.
MongoDB can also function as a graph database that allows the documents to be
linked in a network according to shared index terms related to the analysis and
data. This feature facilitates more complex semantic queries of the database, such
as “Return the machine learning algorithm configurations that achieved the highest
accuracy on any study involving prostate cancer.”

8.6.1 Knowledge Base

The Graph Database Engine serves as the memory of PennAI and provides the
raw materials for the AI to learn which methods and parameter settings are
working better than others for particular kinds of problems. The initial knowledge
base consists of results from a previously published benchmark of scikit-learn
algorithms [24], in which 14 machine learning algorithms were run with full

1FGLab: https://github.com/Kaixhin/FGLab.

https://github.com/Kaixhin/FGLab
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hyperparameter optimization on a suite of 165 supervised classification problems.
The results are combined with meta-information about the datasets (e.g., number of
features, number of instances, correlations between features, etc.) in order to allow
the creation of a mapping from ‘problem instance space’, i.e. dataset meta-features
and model performance, to ‘learning space’, i.e. machine learning algorithms and
their parameters. This data can then be modelled to extract rules that represent the
knowledge used by the Artificial Intelligence Engine to make informed analyses.
The knowledge base will be updated with all future analyses.

8.7 The Artificial Intelligence Engine

Each component described above provides the raw materials for the Artificial
Intelligence Engine which then (1) searches the graph database for results related
to one or more data sets, (2) performs statistical analysis comparing algorithms
and their parameters, (3) combines facts and rules in an expert system to make
new analysis recommendations, (4) communicates findings to the user, and (5)
automatically launches new analyses using suggestions from the expert system.
The first function uses the search capabilities of the MongoDB graph database to
identify relevant machine learning results in the form of JSON files. All returned
JSON files can be parsed to extract the machine learning algorithm, parameters,
and information about the model performance. These results are collated in a tab-
delimited file and a statistical analysis performed to determine the best algorithm
configurations for certain problem types, similar to meta-learning techniques [8].

New statistical results are used to populate the knowledge base of an expert
system that has a set of decision rules provided by developers and advanced machine
learning practitioners. This expert system is then used to make suggestions for
additional analyses, for example by recommending better parameter settings or even
entirely different machine learning algorithms that might be better-suited for the
user’s dataset. The user can access these suggestions manually or PennAI can use the
suggestions to automatically launch new jobs, thus continually growing the PennAI
knowledge base. Essentially, the Artificial Intelligence Engine becomes a research
assistant who tinkers with new ways of modeling the dataset and reports back to the
user with their best findings.

8.8 The Visualization Engine

Visualization will be critical for fostering the human-AI collaboration described
above. The user will need to be able to see individual machine learning models
and results as well as higher-level results from statistical analyses across machine
learning runs. We extract visual results such as the receiver operating characteristic
(ROC) curves and models to store in the graph database, as shown in Fig. 8.5.
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Fig. 8.5 Prototype of the Visualization Engine graphical user interface

PennAI will also generate heatmaps and other visualizations that summarize
results across different machine learning methods and datasets. These higher-level
visualizations will aid the user with making decisions about new manual analyses
to launch and will help them assess how well the PennAI assistant is doing. These
images will be linked to the datasets and results in the Graph Database Engine, and
will thus be easily searchable.

8.9 Discussion and Future Work

Thus far, we have described PennAI as a system that provides a simple interface
for users to upload their datasets, launch machine learning analyses, view the
results of the analyses in an intuitive manner, and use those results to refine their
machine learning analyses. We also described how PennAI will use a combination of
expert knowledge from advanced machine learning practitioners and prior statistical
knowledge of machine learning algorithm performance on datasets to recommend
new analyses to the user, as well as launch its own analyses to later report to the
user. In essence, the primary goal of PennAI is to provide an AI research assistant
for its users. However, considering the name of this workshop and book—Genetic
Programming Theory and Practice—one may be left wondering how GP can be
incorporated into PennAI. In the following paragraphs, we will describe our plans
for integrating GP into PennAI.
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The first point of entry is to include GP as a machine learning option since a num-
ber of successful biomedical applications have been reported (e.g., [17–21, 34]). A
GP system for classification based on multidimensional clustering [31] was recently
demonstrated on biomedical classification problems [15] as a competitive alterna-
tive to traditional machine learning approaches. Recently GP has been proposed
as a general feature engineering wrapper (FEW)2 in order to harness its feature
learning capability to improve scikit-learn estimators, both for regression [13] and
classification [14]. FEW allows GP to provide readable feature transformations to
users while still utilizing existing modeling techniques for making predictions. As
mentioned in Sect. 8.2, interpretation and explanatory power are important aspects
of using AI for data mining, and therefore GP methods that produce concise models,
e.g. by local search [11] or Pareto optimization [12], are important options to
include. Further down the road, it could be possible for PennAI to allow advanced
users to incorporate custom machine learning algorithms into PennAI by providing
a scikit-learn formatted interface to their project (e.g. ellyn3). PennAI could then
provide a “bring your own learner” type of service [1] to allow researchers to tackle
complex data mining tasks with customized learning approaches, and incorporate
the results into its knowledge base for improving future data science projects.

Beyond using GP to perform the machine learning itself, recent work has shown
that GP can also be harnessed to optimize a sequence of existing data analysis and
machine learning operations on a dataset to maximize the predictive performance
of the final machine learning model [30, 35]. For example, TPOT4 is an early
prototype that uses GP to optimize a sequence of scikit-learn operations for both
classification and regression problems [25–27], and has been shown to work quite
well across a broad range of application domains ranging from epidemiological
studies to image classification to time series prediction [23]. Given the general
design of TPOT, the operations it optimizes over can be specialized for particular
problem domains. As another example, the TPOT-MDR project [33] showed that
TPOT can be specialized for genome-wide association studies (GWAS), and it
outperforms several state-of-the-art modeling methods on both simulated and real-
world GWAS problems because it considers a broad range of operations in with
one another. As such, we view GP as a strong candidate for a future version of
the PennAI Artificial Intelligence Engine, where the GP is seeded with the best
known algorithm configurations and uses the core principles of GP (inheritance,
mutation, and crossover)—distributed over a high-performance computing cluster—
to improve the algorithm configurations from there. This brand of GP-based AI
system would be useful for automatically launching new analyses, but less useful
for recommending particular algorithm configurations to the user because GP does
not provide a notion of the “next best” solution to attempt.

2http://lacava.github.io/few.
3http://epistasislab.github.io/ellyn.
4https://github.com/rhiever/tpot.

http://lacava.github.io/few
http://epistasislab.github.io/ellyn
https://github.com/rhiever/tpot
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Another extension of PennAI is the use of a meta genetic algorithm to find
parameters (population size, generation count, etc.) for a GP instance that work
well, i.e., solve a given problem [32]. This meshes well with the idea that the AI of
PennAI will aid non-machine learning experts run complex algorithms, such as GP,
without having to find or even understand every single parameter.

Ultimately, PennAI will likely be comprised of several disparate AI algorithms
that use meta-data and meta-learning to improve the user experience and user
productivity by suggesting machine learning algorithms and parameters, as well as
providing other insights. As a result, we will be able to harness ensemble techniques
to collate the advice given by the numerous AI algorithms.

The time is now to bring AI technology to anyone that wants to use it for big
data analytics. The software and hardware technology exists and data has never
been bigger, more complex, and more plentiful. PennAI will provide both machine
learning and AI capability to both naive and expert users alike with a user-friendly
web and smartphone-enabled interface. We see AI technology such as PennAI not
as a replacement for the data scientist but rather as a data science assistant that
can suggest analyses to the user or provide automatically generated results that are
informed by previous analyses across different data sets. The user can take these
results as-is or use them as inspiration in manual analyses. The democratization of
AI is here.
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